Heterogenous catalysis mediated by plasmon heating.
نویسندگان
چکیده
We introduce a new method for performing and miniaturizing many types of heterogeneous catalysis involving nanoparticles. The method makes use of the plasmon resonance present in nanoscale metal catalysts to provide the necessary heat of reaction when illuminated with a low-power laser. We demonstrate our approach by reforming a flowing, liquid mixture of ethanol and water over gold nanoparticle catalysts in a microfluidic channel. Plasmon heating of the nanoparticles provides not only the heat of reaction but the means to generate both water and ethanol vapor locally over the catalysts, which in turn allows the chip and the fluid lines to remain at room temperature. The measured products of the reaction, CO(2), CO, and H(2), are consistent with catalytic steam reforming of ethanol. The approach, which we refer to as plasmon-assisted catalysis, is general and can be used with a variety of endothermic catalytic processes involving nanoparticles.
منابع مشابه
Mechanistic understanding of surface plasmon assisted catalysis on a single particle: cyclic redox of 4-aminothiophenol
Surface plasmon assisted catalysis (SPAC) reactions of 4-aminothiophenol (4ATP) to and back from 4,4'-dimercaptoazobenzene (DMAB) have been investigated by single particle surface enhanced Raman spectroscopy, using a self-designed gas flow cell to control the reductive/oxidative environment over the reactions. Conversion of 4ATP into DMAB is induced by energy transfer (plasmonic heating) from s...
متن کاملPlasmon resonant enhancement of carbon monoxide catalysis.
Irradiating gold nanoparticles at their plasmon resonance frequency creates immense plasmonic charge and high temperatures, which can be used to drive catalytic reactions. By integrating strongly plasmonic nanoparticles with strongly catalytic metal oxides, significant enhancements in the catalytic activity can be achieved. Here, we study the plasmonically driven catalytic conversion of CO to C...
متن کاملHarvesting the loss: surface plasmon-based hot electron photodetection
Although the nonradiative decay of surface plasmons was once thought to be only a parasitic process within the plasmonic and metamaterial communities, hot carriers generated from nonradiative plasmon decay offer new opportunities for harnessing absorption loss. Hot carriers can be harnessed for applications ranging from chemical catalysis, photothermal heating, photovoltaics, and photodetection...
متن کاملTiO2 Nanoparticles: A Potent Heterogenous Nanocatalyst Mediated One-Pot Tandem Approach for the Environmentally Friendly Synthesis of 3,4-Dihydropyrimidin-2-(1H)-One/Thione Derivatives Under Solvent-Free Conditions
This procedure has developed the use of TiO2 nanoparticles as an environmentally friendly and highly efficient heterogenous nanocatalyst for the eco-safe, facile and one-pot three-component Biginelli synthesis of biologically active corresponding 3,4-dihydropyrimidin-2-(1H)-one/thione derivatives under solvent-free conditions. This eco-friendly protocol provi...
متن کاملPlasmon‐Mediated Solar Energy Conversion via Photocatalysis in Noble Metal/Semiconductor Composites
Plasmonics has remained a prominent and growing field over the past several decades. The coupling of various chemical and photo phenomenon has sparked considerable interest in plasmon-mediated photocatalysis. Given plasmonic photocatalysis has only been developed for a relatively short period, considerable progress has been made in improving the absorption across the full solar spectrum and the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 9 12 شماره
صفحات -
تاریخ انتشار 2009